Gaia: A billion-star 3D map of the Milky Way

Paul McMillan

Lund Observatory, Gaia Data Processing & Analysis Consortium

Launched Dec 2013

How are things going with Gaia?

Everything is going fine.

Key feature: Astrometry

Successor to Hipparcos

The reason Lund is relevant to this discussion

Why astrometry?

For scale:

Proxima centuri – 1 arcsec (hair's width 20 m away)

Gaia's measurement accuracy

How do we achieve this accuracy?

Gaia Focal Plane

106 CCDs \approx 938 million pixels \approx 2800 cm^2

Updating an old idea

Add some lightsabers (?)

Scan the sky

0

Plot routines: Francesca De Angeli, GaiaTools

Big upgrade on Hipparcos

50-100 x more accurate

20,000 x more sources!

No predetermined selection

Additional data

3D in velocity as well as position (for some stars)

Optical colors for all stars

Astrophysical parameters for most/all stars

This is in the absence of e.g. a binary companion

Additional data

3D in velocity as well as position (for some stars)

Optical colors for all stars

Astrophysical parameters for most/all stars

Ability to find orbit solutions for binaries/exoplanets

Solar system objects

Big upgrade on Hipparcos

	Hipparcos	Gaia
Magnitude limit	12 mag	20.7 mag
Completeness	7.3 – 9.0 mag	20.7 mag
Bright limit	0 mag	Ś
Number of objects	120,000	47 million to G = 15 mag
		360 million to G = 18 mag
		~2000 million to G = 20 mag
Effective distance limit	1 kpc	50 kpc
Quasars	1 (3C 273)	500,000
Galaxies	None	1,000,000
Accuracy	1 milliarcsec	7 µarcsec at G = 10 mag
		26 µarcsec at G = 15 mag
		600 µarcsec at G = 20 mag
Photometry	2-colour (B and V)	Low-res. spectra to G = 20
		mag
Radial velocity	None	15 km s ⁻¹ to G_{RVS} = 15.5 mag
Observing	Pre-selected	Complete and unbiased

GAIA'S REACH

The Gaia spacecraft will use parallax and ultra-precise position measurements to obtain the distances and 'proper' (sideways) motions of stars throughout much of the Milky Way, seen here edge-on. Data from Gaia will shed light on the Galaxy's history, structure and dynamics.

Previous missions could measure stellar distances with an accuracy of 10% only up to 100 parsecs* LSun

Galactic Centre

Gaia's limit for measuring distances with an accuracy of 10% will be 10,000 parsecs

(For the brightest stars)

Gaia will measure proper motions accurate to 1 kilometre per second for stars up to 20,000 parsecs away

Teamwork to deliver the promise of Gaia

- 10+ years of effort
- 450 scientists and engineers
- 160 institutes
- 24 countries and ESA
- Six data processing centres

gaia

(Slide from A. Brown)

Data release 1: September 2016

Astronomers celebrate

→ GAIA'S FIRST SKY MAP

Credit: ESA/Gaia/DPAC

European Space Agency

→ GAIA DATA RELEASE 1

14 September 2016

1000 days since launch

Data challenge so far

- >50 billion focal plane transits
- >110 billion photometric observations
- >9.4 billion spectroscopic observations
- ~120,000 hours of computing time to identify stars 6 data processing centres

1 spacecraft 2 telescopes 10 mirrors camera 106 CCDs 937,782,000 pixels

1,500,000 km from

Content of the release

Total number of sources in primary astrometric data set: 2.057.050 with position, magnitude, parallax & proper motion

Total number of sources in secondary astrometric data set: 1.140,622,719 with position & magnitude

3194 Variable stars

 599 Cepheids (43 new discoveries) 2595 RR Lyrae (343 new discoveries)

2152 Quasars with position & magnitude

Data collected over 14 months

1 Milky Way >100,000,000,000 stars ~13,000,000,000 years old

Magnitude distribution

esa

1 day on Gaia

637,000,000 astrometric measurements 155,000,000 photometric measurements 13,000,000 spectrometric measurements 70,000,000 celestial objects 40 GB of data downlinked to Earth

European Space Agency

www.esa.int

1 billion positions & magnitudes

2 million parallaxes & proper motions

Getting parallaxes early

Degeneracy for <1 yr of observations

Deflection of stars?

100

Discovery of clusters

Gaia 1

Rotation of the Large Magellanic Cloud

Bridge between the clouds

Occultation

As a planet/asteroid passes in front of a star, the shadow falls at different points on the Earth at different times.

Can reconstruct the shapes, rings, atmospheres of the solar system body

Occultation

green dots: sites involved in the campaign (not all got data!)

Images from B. Sicardy

Data release 2 – April 2018

Parallaxes and proper motions for a billion stars (brighter than 21st mag)

Colours for all those stars

Radial velocities for around 5 million (brighter than 12th mag)

Epoch astrometry for more than 10000 asteroids

Everything treated as a single star

The Galaxy in colour

Clusters in 3D?

Clusters in 3D?

For example, the Hyades:

~50 pc away (20mas)

Core radius of 2 pc (±0.8mas)

(Compare to ~0.02mas precision)

So we'll have a real 3D map of the cluster without fingers of god

(Image from wikipedia)

Probably pretty good out to ~200pc, but getting worse as you go further. Cleverer approaches needed.

Due in 2020

Radial velocities for ~100 million stars

More detailed photometry

Non-single star catalogues

Solar system results (incl orbit solutions)

Improved everything else

Due 2022

Full catalogues, include epoch data

Source classification

Exo-planet list (~20000 planets, mostly ~Jupiter mass+, periods < 5yr)

Further...

Gaia mission was planned for 5 years

10 years is entirely possible.

We're very optimistic about funding

Improves parallaxes by factor ~1.5, proper motions by factor ~3, binary/exoplanet characterisation by factor ~20!

Thank you!